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Fig. 1. An overview of the results of our study of different CCD methods run on 60 million queries (both vertex-face and edge-edge). For each method, we show

the number of false positives (i.e., the method detects a collision where there is none), the number of false negatives (i.e., the method misses a collision), and

the average run time. Each plot reports results in a logarithmic scale. False positives and negatives are computed with respect to the ground truth computed

using Mathematica [Wolfram Research Inc. 2020]. Acronyms are defined in Section 4.2.

We introduce a large-scale benchmark for continuous collision detection

(CCD) algorithms, composed of queries manually constructed to highlight

challenging degenerate cases and automatically generated using existing

simulators to cover common cases. We use the benchmark to evaluate the

accuracy, correctness, and efficiency of state-of-the-art continuous collision

detection algorithms, both with and without minimal separation.

We discover that, despite the widespread use of CCD algorithms, existing

algorithms are either: (1) correct but impractically slow, (2) efficient but

incorrect, introducing false negatives which will lead to interpenetration, or

(3) correct but over conservative, reporting a large number of false positives

which might lead to inaccuracies when integrated into a simulator.

By combining the seminal interval root-finding algorithm introduced

by Snyder in 1992 with modern predicate design techniques, we propose a

simple and efficient CCD algorithm. This algorithm is competitive with state-

of-the-art methods in terms of runtime while conservatively reporting the
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time of impact and allowing an explicit trade-off between runtime efficiency

and the number of false positives reported.
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1 INTRODUCTION

Collision detection and response are two separate, yet intercon-

nected, problems in computer graphics and scientific computing.

Collision detection specializes in finding when and if two objects

collide, while collision response uses this information to deform the

objects following physical laws. A large research effort has been

invested in the latter problem, assuming that collision detection

can be solved reliably and efficiently. In this study we focus on the

former, using an experimental approach based on large scale testing.

We use existing collision response methods to generate collision de-

tection queries to investigate the pros and cons of existing collision

detection algorithms.

Static collision detection is popular in interactive applications due

to its efficiency, its inability to detect collisions between fast moving

objects passing through each other (tunneling) hinders its applicabil-

ity. To address this limitation, continuous collision detection (CCD)

methods have been introduced: by solving a more computationally
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intensive problem, usually involving finding roots of a low-degree

polynomial, these algorithms can detect any collision happening in

a time step, often assuming linear trajectories.

The added robustness makes this family of algorithms popular,

but they can still fail due to floating-point rounding errors. Floating

point failures are of two types: false negatives, i.e., missed collisions,

which lead to interpenetration, and false positives, i.e., detecting

collisions when there are none.

Most collision response algorithms can tolerate minor imperfec-

tions, using heuristics to recover from physically invalid states (in

reality, objects cannot inter-penetrate). However, these heuristics

have parameters that needs to be tuned for every scene to ensure

stability and faithfulness in the simulation [Li et al. 2020]. Recently,

the collision response problem has been reformulated to avoid the

use of heuristics, and the corresponding parameter tuning, by disal-

lowing physically invalid configurations [Li et al. 2020]. For instance,

in the attached video, the method in [Li et al. 2020] cannot recover

from interpenetration after the CCD misses a collision leading to

an unnatural “sticking” and eventual failure of the simulation. This

comes with a heavier burden on the CCD algorithm used, which

should never report false negatives.

We introduce a large benchmark of CCD queries with ground

truth computed using the exact, symbolic solver ofMathematica [Wol-

fram Research Inc. 2020], and evaluate the correctness (lack of false

negatives), conservativeness (false positive count), and runtime ef-

ficiency of existing state of the art algorithms. The benchmark is

composed of both manually designed queries to identify degener-

ate cases (building upon [Erleben 2018]) and a large collection of

real-world queries extracted from simulation sequences. On the

algorithmic side, we select representative algorithms from the three

main approaches existing in the literature for CCD root-finding:

inclusion-based bisection methods [Redon et al. 2002; Snyder et al.

1993], numerical methods [Vouga et al. 2010; Wang et al. 2015], and

exact methods [Brochu et al. 2012; Tang et al. 2014]. Thanks to our

benchmark, we identified missing cases that were not handled by

previous methods, and we did a best effort to fix the corresponding

algorithms and implementations to account for these cases.

The surprising conclusion of this study (Section 4.2) is that the

majority of the existing CCD algorithms produce false negatives, ex-

cept three: (1) symbolic solution of the system and evaluation with

exact arithmetic computed using Mathematica [Wolfram Research

Inc. 2020], (2) Bernstein sign classification (BSC) with conservative

error analysis [Wang et al. 2015], and (3) inclusion-based bisection

root finding [Redon et al. 2002; Snyder et al. 1993]. (1) is extremely

expensive and, while it can be used for generating the ground truth,

it is impractical in simulation applications. (2) is efficient but gener-

ates many false positives and the number of false positives depends

on the geometric configuration and velocities involved. (3) is one of

the oldest methods proposed for CCD. It is slow compared to state

of the art algorithms, but it is correct and allows precise control of

the trade-off between false positives and computational cost.

This extensive analysis and benchmark inspired us to introduce

a specialization of the classical inclusion-based bisection algorithm

proposed in [Snyder 1992] to the specific case of CCD for triangu-

lar meshes (Section 5). The major changes are: a novel inclusion

function, an efficient strategy to perform bisection, and the ability

to find CCD roots with minimal separation (Section 6). Our novel

inclusion function:

(1) is tighter leading to smaller boxes on average thus making

our method more accurate (i.e., less false positive);

(2) reduces the root-finding problem into the iterative evaluation

of a Boolean function, which allows replacing explicit interval

arithmetic with a more efficient floating point filtering;

(3) can be vectorized with AVX2 instructions.

With these modifications, our inclusion-based bisection algorithm

is only 3× slower on average than the fastest inaccurate CCD al-

gorithm. At the same time it is provably conservative, provides a

controllable ratio of false positives (within reasonable numerical

limits), supports minimal separation, and reports the time of impact.

We also discuss how to integrate minimal separation CCD in algo-

rithms employing a line search to ensure the lack of intersections,

which are common in locally injective mesh parametrization and

have been recently introduced in physical simulation by Li et al.

[2020].

Our dataset is available at the NYU Faculty Digital Archive, while

the implementation of all the algorithms compared in the bench-

mark, a reference implementation of our novel inclusion-based bi-

section algorithm, and scripts to reproduce all results (Section 4) are

available on our project web page. We believe this dataset will be an

important element to support research in efficient and correct CCD

algorithms, while our novel inclusion-based bisection algorithm is

a practical solution that will allow researchers and practitioners

to robustly check for collisions in applications where a 3× slow-

down in the CCD (which is usually only one of the expensive steps

of a simulation pipeline) will be preferable over the risk of false

negatives or the need to tune CCD parameters.

2 RELATED WORK

We present a brief overview of the previous works on continuous col-

lision detection for triangle meshes. Our work focuses only on CCD

for deformable trianglemeshes andwe thus exclude discussingmeth-

ods approximating collisions using proxies (e.g., Hubbard [1995];

Mirtich [1996]).

Inclusion-Based Root-Finding. The generic algorithm in the sem-

inal work of Snyder [1992] on interval arithmetic for computer

graphics is a conservative way to find collisions [Redon et al. 2002;

Snyder et al. 1993; Von Herzen et al. 1990]. This approach uses in-

clusion functions to certify the existence of roots within a domain,

using a bisection partitioning strategy. Surprisingly, this approach

is not used in recent algorithms despite being provably conservative

and simple. Our algorithm is based on this approach, but with two

major extensions to improve its efficiency (Section 5).

Numerical Root-Finding. The majority of CCD research focuses

on efficient and accurate ways of computing roots of special cubic

polynomials. Among these, a most popular cubic solver approach

is introduced by Provot [1997], in which a cubic equation is solved

to check for coplanarity, and then the overlapping occurrence is

validated to determine whether a collision actually occurs. Refined

constructions based on this idea have been introduced for rigid [Kim

and Rossignac 2003; Redon et al. 2002] and deformable [Hutter and
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Fuhrmann 2007; Tang et al. 2011] bodies. However, all of these algo-

rithms are based on floating-point arithmetic, requiring numerical

thresholds to account for the unavoidable rounding errors in the

iterative root-finding procedure. In fact, even if the cubic polynomial

is represented exactly, its roots are generally irrational and thus

not representable with floating-point numbers. Unfortunately, the

numerical thresholds make these algorithms robust only for specific

scenarios, and they can in general introduce false negatives. Our ap-

proach has a moderately higher runtime than these algorithms, but

it is guaranteed to avoid false negatives without parameter tuning.

We benchmark Provot [1997] using the implementation of Vouga

et al. [2010] in Section 4.

For most applications, false positives are less problematic than

false negatives since a false negative will miss a collision, leading

to interpenetration and potentially breaking the simulation. Tang

et al. [2010] propose a simple and effective filter which can reduce

both the number of false positives and the elementary tests between

the primitives. Wang [2014] and Wang et al. [2015] improve its

reliability by introducing forward error analysis, in which error

bounds for floating-point computation are used to eliminate false

positives. We benchmark the representative method of Wang et al.

[2015] in Section 4.

Exact Root-Finding. Brochu et al. [2012] and Tang et al. [2014]

introduce algorithms relying on exact arithmetic to provide ex-

act continuous collision detection. However, after experimenting

with their implementations and carefully studying their algorithms,

we discovered that they cannot always provide the exact answer

(Section 4). Brochu et al. [2012] rephrase the collision problem as

counting the number of intersections between a ray and the bound-

ary of a subset of R3
bounded by bilinear faces. The ray casting

and polygonal construction can be done using rational numbers (or

more efficiently with floating point expansions) to avoid floating-

point rounding errors. In [Tang et al. 2014] the CCD queries are

reduced to the evaluation of the signs of Bernstein polynomials and

algebraic expressions, using a custom root finding algorithm. Our

algorithm uses the geometric formulation proposed in [Brochu et al.

2012], but uses a bisection strategy instead of ray casting to find

the roots. We benchmark both [Brochu et al. 2012] and [Tang et al.

2014] in Section 4.

Minimal Separation. Minimal separation CCD (MSCCD) [Harmon

et al. 2011; Lu et al. 2019; Provot 1997; Stam 2009] reports collisions

when two objects are at a (usually small) user-specified distance.

These approaches have two main applications: (1) a minimal sepa-

ration is useful in fabrication settings to ensure that the fabrication

errors will not lead to penetrations, and (2) a minimal separation

can ensure that, after floating-point rounding, two objects are still

not intersecting, an invariant which must be preserved by certain

simulation codes [Harmon et al. 2011; Li et al. 2020]. We bench-

mark [Harmon et al. 2011] in Section 6.2. Our algorithm supports

a novel version of minimal separation, where we use the 𝐿∞ norm

instead of 𝐿2
(Section 6.1).

Collision Culling. An orthogonal problem is efficient high-level

collision culling to quickly filter out primitive pairs that do not

collide in a time step. Since in this case it is tolerable to have many

false positives, it is easy to find conservative approaches that are

guaranteed to not discard potentially intersecting pairs [Curtis et al.

2008; Govindaraju et al. 2005; Mezger et al. 2003; Pabst et al. 2010;

Provot 1997; Schvartzman et al. 2010; Tang et al. 2009a, 2008; Volino

and Thalmann 1994; Wong and Baciu 2006; Zhang et al. 2007; Zheng

and James 2012]. Any of these approaches can be used as a prepro-

cessing step to any of the CCD methods considered in this study to

improve performance.

Generalized Trajectories. The linearization of trajectories com-

monly used in collision detection is a well-established, practical

approximation, ubiquitous in existing codes. There are, however,

methods that can directly detect collisions between objects follow-

ing polynomial trajectories [Pan et al. 2012] or rigid motions [Canny

1986; Redon et al. 2002; Tang et al. 2009b; Zhang et al. 2007], and

avoid the approximation errors due to the linearization. Our algo-

rithm currently does not support curved trajectories and we believe

this is an important direction for future work.

3 PRELIMINARIES AND NOTATION

Assuming that the objects are represented using triangular meshes

and that every vertex moves in a linear trajectory in each time step,

the first collision between moving triangles can happen either when

a vertex hits a triangle, or when an edge hits another edge.

Thus a continuous collision detection algorithm is a procedure

that, given a vertex-face or edge-edge pair, equipped with their lin-
ear trajectories, determines if and when they will touch. Formally,

for the vertex-face CCD, given a vertex 𝑝 and a face with vertices

𝑣1, 𝑣2, 𝑣3 at two distinct time steps 𝑡0
and 𝑡1

(we use the super-

script notation to denote the time, i.e., 𝑝0
is the position of 𝑝 at 𝑡0

),

the goal is to determine if at any point in time between 𝑡0
and 𝑡1

the vertex is contained in the moving face. Similarly for the edge-

edge CCD the algorithm aims to find if there exists a 𝑡 ∈ [𝑡0, 𝑡1]
where the two moving edges (𝑝𝑡

1
, 𝑝𝑡

2
) and (𝑝𝑡

3
, 𝑝𝑡

4
) intersect. We will

briefly overview and discuss the pros and cons of the two major

formulations present in the literature to address the CCD problem:

multi-variate and univariate.

Multivariate CCD Formulation. The most direct way of solving

this problem is to parametrize the trajectories with a parameter

𝑡 ∈ [0, 1] (i.e., 𝑝𝑖 (𝑡) = (1 − 𝑡)𝑝0

𝑖
+ 𝑡𝑝1

𝑖
and 𝑣𝑖 (𝑡) = (1 − 𝑡)𝑣0

𝑖
+ 𝑡𝑣1

𝑖
)

and write a multivariate polynomial whose roots correspond to

intersections. That is finding the roots of

𝐹
vf

: Ω
vf
= [0, 1] × {𝑢, 𝑣 ⩾ 0|𝑢 + 𝑣 ⩽ 1} → R3

with

𝐹
vf
(𝑡,𝑢, 𝑣) = 𝑝 (𝑡) −

(
(1 − 𝑢 − 𝑣)𝑣1 (𝑡) + 𝑢𝑣2 (𝑡) + 𝑣𝑣3 (𝑡)

)
, (1)

for the vertex-face case. Similarly for the edge-edge case the goal is

to find the roots of

𝐹ee : Ωee = [0, 1] × [0, 1]2 → R3

with

𝐹ee (𝑡,𝑢, 𝑣) =
(
(1−𝑢)𝑝1 (𝑡) +𝑢𝑝2 (𝑡)

)
−
(
(1− 𝑣)𝑝3 (𝑡) + 𝑣𝑝4 (𝑡)

)
. (2)

In other words, the CCD problem reduces to determining if 𝐹 has a

root in Ω (i.e., there is a combination of valid 𝑡,𝑢, 𝑣 for which the

vector between the point and the triangle is zero) [Brochu et al.
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Fig. 2. Scenes from Erleben [2018] that are used to generate a large part of

the handcrafted dataset.

2012]. The main advantage of this formulation is that it is direct and

purely algebraic: there are no degenerate or corner cases to handle.

The intersection point is parameterized in time and local coordi-

nates and the CCD problem reduces to multivariate root-finding.

However, finding roots of a system of quadratic polynomials is diffi-

cult and expensive, which led to the introduction of the univariate

formulation.

Univariate CCD Formulation. An alternative way of addressing

the CCD problem is to rely on a geometric observation: two prim-

itives intersects if the four points (i.e., one vertex and the three

triangle’s vertices or the two pairs of edge’s endpoints) are copla-

nar [Provot 1997]. This observation has the major advantage of only

depending on time, thus the problem becomes finding roots in a

univariate cubic polynomial:

𝑓 (𝑡) = ⟨𝑛(𝑡), 𝑞(𝑡)⟩ = 0, (3)

with

𝑛(𝑡) =
(
𝑣2 (𝑡) − 𝑣1 (𝑡)

)
×
(
𝑣3 (𝑡) − 𝑣1 (𝑡)

)
and 𝑞(𝑡) = 𝑝 (𝑡) − 𝑣1 (𝑡)

for the vertex-face case and

𝑛(𝑡) =
(
𝑝2 (𝑡) − 𝑝1 (𝑡)

)
×
(
𝑝4 (𝑡) − 𝑝3 (𝑡)

)
and 𝑞(𝑡) = 𝑝3 (𝑡) − 𝑝1 (𝑡)

for the edge-edge case. Once the roots 𝑡★ of 𝑓 are identified, they

need to be filtered, as not all roots correspond to actual collisions.

While filtering is straightforward when the roots are finite, special

care is needed when there is an infinite number of roots, such as

when the two primitives are moving on the same plane. Handling

these cases, especially while accounting for floating point rounding,

is very challenging.

4 BENCHMARK

4.1 Dataset

We crafted two datasets to compare the performance and correctness

of CCD algorithms: (1) a handcrafted dataset that contains over 12

thousand point-triangle and 15 thousand edge-edge queries, and (2)

a simulation dataset that contains over 18 million point-triangle and

41 million edge-edge queries. To foster replicability, we describe the

format of the dataset in Appendix A.

The handcrafted queries are the union of queries simulatedwith [Li

et al. 2020] from the scenes in [Erleben 2018] (Figure 2) and a set of

handcrafted pairs for degenerate geometric configurations. These

Fig. 3. The scenes used to generate the simulation dataset of queries. We

use two simulation methods: (top) a sequential quadratic programming

(SQP) method with constraints and active set update from Verschoor and

Jalba [2019] and (bottom) the method proposed by Li et al. [2020].

include: point-point degeneracies, near collisions (within a floating-

point epsilon from collision), coplanar vertex-face and edge-edge

motion (where the function 𝑓 (3) has infinite roots), degenerated

function 𝐹
vf
and 𝐹ee, and CCD queries with two or three roots.

The simulation queries were generated by running four nonlinear

elasticity simulations. The first two simulations (Figure 3 top row)

use the constraints of [Verschoor and Jalba 2019] to simulate two

cow heads colliding and a chain of rings falling. The second two

simulations (Figure 3 bottom row) use the method of [Li et al. 2020]

to simulate a coarse mat twisting and the high speed impact of a

golf ball hitting a planar wall.

4.2 Comparison

We compare seven state-of-the-art methods: (1) the interval root-

finder (IRF) [Snyder 1992], (2) the univariate interval root-finder

(UIRF) (a special case of the rigid-body CCD from [Redon et al.

2002]), (3) the floating-point time-of-impact root finder [Provot

1997] (FPRF) implemented in [Vouga et al. 2010], (4) TightCCD

(TCCD) [Wang et al. 2015], (5) Root Parity (RP) [Brochu et al. 2012],

(6) a rational implementation of Root Parity (RRP) with the degen-

erate cases properly handled, and (7) Bernstein Sign Classification

(BSC) [Tang et al. 2014]. For each method we collect the average

query time, the number of false positives (i.e., there is no collision

but the method detects one), and the number of false negatives (i.e.,

there is a collision but the method misses it). To obtain the ground

truth we solve the multivariate CCD formulation (equations (1) and

(2)) symbolically using Mathematica [Wolfram Research Inc. 2020]

which takes multiple seconds per query. Table 1 summarizes the

results. Note that “Ours” corresponds to our new method that will

be introduced and discussed in Section 5 and MSRF is a minimum

separation CCD discussed in Section 6.2.
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A Large Scale Benchmark and an Inclusion-Based Algorithm for Continuous Collision Detection • 188:5

Table 1. Summary of the average runtime in 𝜇𝑠 (t), number of false positive

(FP), and number of false negative (FN) for the six competing methods.

Handcrafted Dataset (12K) – Vertex-Face CCD

IRF UIRF FPRF TCCD RP RRP BSC MSRF Ours

t 14942.40 124242.00 2.18 0.38 1.41 928.08 176.17 12.90 1532.54

FP 87 146 9 903 3 0 11 16 108

FN 0 0 70 0 5 5 13 386 0

Handcrafted Dataset (15K)– Edge-Edge CCD

IRF UIRF FPRF TCCD RP RRP BSC MSRF Ours

t 12452.60 18755.80 0.48 0.33 2.33 1271.32 121.80 2.72 3029.83

FP 141 268 5 404 3 0 28 14 214

FN 0 0 147 0 8 8 47 335 0

Simulation Dataset (18M) – Vertex-Face CCD

IRF UIRF FPRF TCCD RP RRP BSC MSRF Ours

t 115.89 6191.98 7.53 0.24 0.25 1085.13 34.21 51.07 0.74

FP 2 18 0 95638 0 0 23015 75 2

FN 0 0 5184 0 0 0 0 0 0

Simulation Dataset (41M) – Edge-Edge CCD

IRF UIRF FPRF TCCD RP RRP BSC MSRF Ours

t 215.80 846.57 0.23 0.23 0.37 1468.70 12.87 10.39 0.78

FP 71 16781 0 82277 0 0 4593 228 17

FN 0 0 2317 0 7 7 27 1 0

IRF. The inclusion-based root-finding described in [Snyder 1992]

can be applied to both the multivariate and univariate CCD. For

the multivariate case we can simply initialize the parameters of 𝐹

(i.e., 𝑡,𝑢, 𝑣) with the size of the domain Ω, evaluate 𝐹 and check if

the origin is contained in the output interval [Snyder et al. 1993].

If it is, we sequentially subdivide the parameters (thus shrinking

the size of the intervals of 𝐹 ) until a user-tolerance 𝛿 is reached.

In our comparison we use 𝛿 = 10
−6
. The major advantage of this

approach is that it is guaranteed to be conservative: it is impossible

to shrink the interval of 𝐹 to zero. A second advantage is that a

user can easily trade accuracy (number of false positives) for effi-

ciency by simply increasing the tolerance 𝛿 (Appendix D). The main

drawback is that bisecting Ω in the three dimensions makes the

algorithm slow, and the use of interval arithmetic further increases

the computational cost and prevents the use of certain compiler

optimization techniques (such as instruction reordering). We imple-

ment this approach using the numerical type provided by the Boost

interval library [Schling 2011].

UIRF. [Snyder 1992] can also be applied to the univariate function

in Equation (3) by using the same subdivision technique on the

single variable 𝑡 (as in [Redon et al. 2002] but for linear trajectories).

The result of this step is an interval containing the earliest root

in 𝑡 which is then plugged inside a geometric predicate to check

if the primitives intersect in that interval. While finding the roots

with this approach might, at a first glance, seem easier than in the

multi-variate case and thus more efficient, this is not the case in our

experiments. If the polynomial has infinite roots, this algorithm will

have to refine the entire domain to the maximal allowed resolution,

and check the validity of each interval, making it correct but very

slow on degenerate cases (Appendix D). This results in a longer

average runtime than its multivariate counterpart. Additionally, it

is impossible to control the accuracy of the other two parameters

(i.e., 𝑢, 𝑣), thus introducing more false positives.

FPRF. Vouga et al. [2010] aim to solve the univariate CCD problem

using only floating-point computation. To mitigate false negatives,

the method uses a numerical tolerance 𝜂 (Appendix E) shows how

𝜂 affects running time, the false positive, and negative). The major

limitations are that the number of false positives cannot be directly

controlled as it depends on the relative position of the input prim-

itives and that false negatives can appear if the parameter is not

tuned accordingly to the objects velocity and scale. Additionally,

the reference implementation does not handle the edge-edge CCD

when the two edges are parallel. This method is one of the fastest,

which makes it a very popular choice in many simulation codes.

TCCD. TightCCD is a conservative floating-based implementa-

tion of Tang et al. [2014]. It uses the univariate formulation coupled

with three inequality constraints (two for the edge-edge case) to

ensure that the univariate root is a CCD root. The algorithm ex-

presses the cubic polynomial 𝑓 as a product and sum of three low

order polynomials in Bernstein form. With this reformulation the

CCD problem becomes checking if univariate Bernstein polynomi-

als are positive, which can be done by checking some specific points.

This algorithm is extremely fast but introduces many false positives

which are impossible to control. In our benchmark, this is the only

non-interval method without false negatives. The major limitation

of this algorithm is that it always detects collision if the primitives

are moving in the same plane, independently from their relative

position.

RP and RRP. These two methods use the multivariate formulation

𝐹 (equations (1) and (2)). The main idea is that the parity of the

roots of 𝐹 can be reduced to a ray casting problem. Let 𝜕Ω be the

boundary of Ω, the algorithm shoots a ray from the origin and

counts the parity of the intersection between the ray and 𝐹 (𝜕Ω)
which corresponds to the parity of the roots of 𝐹 . Parity is however

insufficient for CCD: these algorithms cannot differentiate between

zero roots (no collision) and two roots (collision), since they have

the same parity. We note that this is a rare case happening only

with sufficiently large time-steps and/or velocities: we found 13

(handcrafted dataset) and 7 (simulation dataset) queries where these

methods report a false negative.

We note that the algorithm described in [Brochu et al. 2012] (and

its reference implementation) does not handle some degenerate

cases leading to both false negatives and positives. For instance,

in Appendix B, we show an example of a “hourglass” configura-

tion where RP misses the collision, generating a false negative. To

overcome this limitations and provide a fair comparison to these

techniques, we implemented a naïve version of this algorithm that

handles all the degenerate cases using rational numbers to sim-

plify the coding (see the additional materials). We opted for this

rational implementation since properly handling the degeneracies

using floating-point requires designing custom higher precision

predicates for all cases. The main advantage of this method is that

it is exact (when the degenerate cases are handled) as it does not

contain any tolerance and thus has zero false positives. We note

that the runtime of our rational implementation is extremely high
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and not representative of the runtime of a proper floating point

implementation of this algorithm.

BSC. This efficient and exact method uses the univariate formula-

tion coupled with inequality constraints to ensure that the coplanar

primitives intersects. The coplanarity problem reduces to checking

if 𝑓 in Bernstein form has a root. Tang et al. [2014] explain how this

can be done exactly by classifying the signs of the four coefficients of

the cubic Bernstein polynomial. The classification holds only if the

cubic polynomial has monotone curvature; which can be achieved

by splitting the curve at the inflection point. This splitting, however,

cannot be computed exactly as it requires divisions (Appendix C).

In our comparison, we modified the reference implementation to fix

a minor typo in the code and to handle 𝑓 with inflection points by

conservatively reporting collision. This change introduces potential

false positives, and we refer to the additional material for more

details and for the patch we applied to the code.

Discussion and Conclusions. From our extensive benchmark of

CCD algorithms, we observe that most algorithms using the uni-

variate formulation have false negatives. While the reduction to

univariate root findings provides a performance boost, filtering the

roots (without introducing false positives) is a challenging problem

for which a robust solution is still elusive.

Surprisingly, only the oldest method, IRF, is at the same time

reasonably efficient (e.g., it does not take multiple seconds per query

as Mathematica), correct (i.e., no false negatives), and returns a small

number of false positives (which can be controlled by changing the

tolerance 𝛿). It is however slower than other state of the art methods,

which is likely the reason why it is currently not widely used. In

the next section we show that it is possible to change the inclusion

function used by this algorithm to keep its favorable properties,

while decreasing its runtime by ∼250 times, making its performance

competitive with state of the art methods.

5 METHOD

We describe the seminal bisection root-finding algorithm introduced

in [Snyder 1992] (Section 5.1) and then introduce our novel Boolean

inclusion function and how to evaluate it exactly and efficiently

using floating point filters (Section 5.2).

5.1 Solve Algorithm [Snyder 1992]

An interval 𝑖 = [𝑎, 𝑏] is defined as

𝑖 = [𝑎, 𝑏] = {𝑥 |𝑎 ⩽ 𝑥 ⩽ 𝑏, 𝑥, 𝑎, 𝑏 ∈ R},

and, similarly, an 𝑛-dimensional interval is defined as

𝐼 = 𝑖1 × · · · × 𝑖𝑛,

where 𝑖𝑘 are intervals. We use L(𝑖) and R(𝑖) to refer to the left and
right parts of an unidimensional interval 𝑖 . The width of an interval,

written as𝑤 (𝑖) = 𝑤 ( [L(𝑖),R(𝑖)]), is defined by

𝑤 (𝑖) = R(𝑖) − L(𝑖)

and similarly, the width of an 𝑛-dimensional interval

𝑤 (𝐼 ) = max

𝑘={1,...,𝑛}
𝑤 (𝑖𝑘 ) .
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Fig. 4. 1D illustration of the first three levels of the inclusion based root-

finder in [Snyder 1992].

An interval can be used to define an inclusion function. For-

mally, given an𝑚-dimensional interval𝐷 and a continuous function

𝑔 : R𝑚 → R𝑛 , an inclusion function for 𝑔, written□𝑔, is a function
such that

∀𝑥 ∈ 𝐷 𝑔(𝑥) ∈□𝑔(𝐷).
In other words, □𝑔(𝐷) is a 𝑛-dimensional interval bounding the

range of 𝑔 evaluated over an𝑚-dimensional interval 𝐷 bounding its

domain. We call the inclusion function□𝑔 of a continuous function

𝑔 convergent if for an interval 𝑋

𝑤 (𝑋 ) → 0 =⇒ 𝑤
(□𝑔(𝑋 )

)
→ 0.

A convergent inclusion function can be used to find a root of a func-
tion 𝑔 over a domain bounded by the interval 𝐼0 = [L(𝑥1),R(𝑥1)] ×
· · · × [L(𝑥𝑚),R(𝑥𝑚)]. To find the roots of 𝑔, we sequentially bisect

the initial𝑚-dimensional interval 𝐼0, until it becomes sufficiently

small (Algorithm 1). Figure 4 shows a 1D example (i.e., 𝑔 : R→ R) of
a bisection algorithm. The algorithm starts by initializing a stack 𝑆

of intervals to be checked with 𝐼0 (line 3). At every level ℓ (line 5), the

algorithm retrieves an interval 𝐼 from 𝑆 and evaluates the inclusion

function to obtain the interval 𝐼𝑔 (line 7). Then it checks if the root is

included in 𝐼𝑔 (line 8). If not 𝐼 can be safely discarded since 𝐼𝑔 bounds

the range of 𝑔 over the domain bounded by 𝐼 . Otherwise (0 ∈ 𝐼𝑔 ),
it checks if𝑤 (𝐼 ) is smaller than a user-defined threshold 𝛿 . If so it

appends 𝐼 to the result (line 10). If 𝐼 is too large, the algorithm splits

one of its dimensions (e.g., [L(𝑥1),R(𝑥1)] is split in [L(𝑥1), 𝑥1]
and [𝑥1,R(𝑥1)] with 𝑥1 = (L(𝑥1) +R(𝑥1))/2) and appends the two
new intervals 𝐼1, 𝐼2 to the stack 𝑆 (line 13).

Generic Construction of Inclusion Functions. Snyder [1992] pro-
poses the use of interval arithmetic as a universal and automatic

way to build inclusion functions for arbitrary expressions. However,

interval arithmetic adds a performance overhead to the computation.

For example, the product between two intervals is

[𝑎, 𝑏] · [𝑐, 𝑑] = [min(𝑎𝑐, 𝑎𝑑, 𝑏𝑐, 𝑏𝑑),max(𝑎𝑐, 𝑎𝑑, 𝑏𝑐, 𝑏𝑑)],

which requires four multiplications and two min/max instead of one

multiplication. In addition, the compiler cannot optimize composite

expressions, since the rounding modes need to be correctly set up

and the operation needs to be executed in order to avoid rounding

errors [Schling 2011].

5.2 Predicate-Based Bisection Root Finding

Instead of using interval arithmetic to construct the inclusion func-

tion□𝐹 for the interval 𝐼Ω = 𝐼𝑡 × 𝐼𝑢 × 𝐼𝑣 = [0, 1] × [0, 1] × [0, 1]
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Algorithm 1 Inclusion-based root-finder

1: function solve(𝐼0, 𝑔, 𝛿)

2: res← ∅
3: 𝑆 ← {𝐼0}
4: ℓ ← 0

5: while 𝑆 ≠ ∅ do
6: 𝐼 ← pop(𝑆)

7: 𝐼𝑔 ←□𝑔(𝐼 ) ⊲ Compute the inclusion function

8: if 0 ∈ 𝐼𝑔 then
9: if 𝑤 (𝐼 ) < 𝛿 then ⊲ 𝐼 is small enough

10: res← res ∪ 𝐼
11: else
12: 𝐼1, 𝐼2 ← split(𝐼 )
13: 𝑆 ← 𝑆 ∪ {𝐼1, 𝐼2}
14: ℓ ← ℓ + 1

return res

around the domain Ω, we propose to define an inclusion function

tailored for 𝐹 (both for Equation (1) and (2)) as the box

𝐵𝐹 (𝐼Ω) = [𝑚𝑥 , 𝑀𝑥 ] × [𝑚𝑦, 𝑀𝑦] × [𝑚𝑧 , 𝑀𝑧] (4)

with

𝑚𝑐 = min

𝑖=1,...,8
(𝑣𝑐𝑖 ), 𝑀𝑐 = max

𝑖=1,...,8
(𝑣𝑐𝑖 ), 𝑐 = {𝑥,𝑦, 𝑧}

𝑣𝑖 = 𝐹 (𝑡𝑚, 𝑢𝑛, 𝑣𝑙 ), 𝑡𝑚, 𝑢𝑛, 𝑣𝑙 ∈ {0, 1}, and 𝑚,𝑛, 𝑙 ∈ {1, 2}.

Proposition 5.1. The inclusion function 𝐵𝐹 defined in (4) is the
tightest axis-aligned inclusion function of 𝐹 .

Proof. We note that for any given �̃� the function 𝐹 (𝑡, �̃�, 𝑣) is
bilinear; we call this function function 𝐹�̃� (𝑡, 𝑣). Thus, 𝐹 can be re-

garded as a bilinear function whose four control points move along

linear trajectories T (𝑢)𝑖 , 𝑖 = 1, 2, 3, 4. The range of 𝐹�̃� is a bilinear

surface which is bounded by the tetrahedron constructed by the

four vertices forming the bilinear surface, which are moving on T𝑖 .
Thus, 𝐹 is bounded by every tetrahedron formed by T (𝑢)𝑖 , implying

that 𝐹 is bounded by the convex hull of the trajectories’ vertices,

which are the vertices 𝑣𝑖 , 𝑖 = 1, · · · , 8 defining 𝐹 . Finally, since 𝐵𝐹 is

the axis-aligned bounding box of the convex-hull of 𝑣𝑖 , 𝑖 = 1, · · · , 8,
𝐵𝐹 is an inclusion function for 𝐹 .

Since the vertices of the convex hull belong to 𝐹 and the convex

hull is the tightest convex hull, the bounding box 𝐵𝐹 of the convex

hull is the tightest inclusion function. □

Theorem 5.2. The inclusion function 𝐵𝐹 defined in (4) is conver-
gent.

Proof. We first note that 𝐹 is trivially continuous, second that

the standard interval-based inclusion function□𝐹 constructed with

intervals is axis-aligned. Therefore, from Proposition 5.1, it follows

that 𝐵𝐹 (𝐼 ) ⊆ □𝐹 (𝐼 ) for any interval 𝐼 . Finally, since□𝐹 is conver-

gent [Snyder 1992], then also 𝐵𝐹 is. □

The inclusion function 𝐵𝐹 turns out to be ideal for constructing

a predicate: to use this inclusion function in the solve algorithm

(Algorithm 1), we only need to check if, for a given interval 𝐼 , 𝐵𝐹 (𝐼 )

contains the origin (line 8). Such a Boolean predicate can be conser-

vatively evaluated using floating point filtering.

Conservative Predicate Evaluation. Checking if the origin is con-

tained in an axis-aligned box is trivial and it reduces to checking if

the zero is contained in the three intervals defining the sides of the

box. In our case, this requires us to evaluate the sign of 𝐹 at the eight

box corners. However, the vertices of the co-domain are computed

using floating point arithmetic and can thus be inaccurate. We use

forward error analysis to conservatively account for these errors as

follows.

Without loss of generality, we focus only on the 𝑥-axis. Let

{𝑣𝑥
𝑖
}, 𝑖 = 1, . . . , 8 be the set of 𝑥-coordinates of the 8 vertices of the

box represented in double precision floating-point numbers. The

error bound for 𝐹 (on the 𝑥-axis) is

𝜀𝑥
ee

= 6.217248937900877 × 10
−15𝛾3

𝑥

𝜀𝑥
vf
= 6.661338147750939 × 10

−15𝛾3

𝑥
(5)

with

𝛾𝑥 = max(𝑥max, 1) and 𝑥max = max

𝑖=1,...,8
( |𝑣𝑥𝑖 |) .

That is, the sign of 𝐹𝑥
ee

computed using floating-point arithmetic is

guaranteed to be correct if |𝐹𝑥
ee
| > 𝜀𝑥

ee
, and similarly for the vertex

face case. If this condition does not hold, we conservatively assume

that the zero is contained in the interval, thus leading to a possible

false positive. The two constants 𝜀𝑥
ee

and 𝜀𝑥
vf
are floating point filters

for 𝐹𝑥
ee

and 𝐹𝑥
vf
respectively, and were derived using [Attene 2020].

Efficient Evaluation. The 𝑥,𝑦, 𝑧 predicates defined above depend

only on a subset of the coordinates of the eight corners of 𝐵𝐹 (𝐼 ).
We can optimally vectorize the evaluation of the eight corners us-

ing AVX2 instructions (∼4× improvement in performance), since it

needs to be evaluated on eight points and all the computation is

standard floating-point arithmetic. Note that we used AVX2 instruc-

tions because newer versions still have spotty support on current

processors. After the eight points are evaluated in parallel, applying

the floating-point filter involves only a few comparisons. To further

reduce computation, we check one axis at a time and immediately

return if any of the intervals do not contain the origin.

Algorithm. We describe our complete algorithm in pseudocode

in Algorithm 2. The input to our algorithm are the eight points

representing two primitives (either vertex-face or edge-edge), a user-

controlled numerical tolerance 𝛿 > 0 (if not specified otherwise,

in the experiment we use the default value 𝛿 = 10
−6
), and the

maximum number of checks 𝑚𝐼 > 0 (we use the default value

𝑚𝐼 = 10
6
). These choice are based on our empirical results (figures 8

and 9). The output is a conservative estimate of the earliest time of

impact or infinity if the two primitives do not collide in the time

intervals coupled with the reached tolerance.

Our algorithm iteratively checks the box 𝐵 = 𝐵𝐹 (𝐼 ), with 𝐼 =

𝐼𝑡 × 𝐼𝑢 × 𝐼𝑣 = [𝑡1, 𝑡2] × [𝑢1, 𝑢2] × [𝑣1, 𝑣2] ⊂ 𝐼Ω (initialized with [0, 1]3).
To guarantee a uniform box size while allowing early termination

of the algorithm, we explore the space in a breadth-first manner

and record the current explored level ℓ (line 6). Since our algorithm

is designed to find the earliest time of impact, we sort the visiting

queue 𝑄 with respect to time (line 21).
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Algorithm 2 Complete overview of our CCD algorithm.

1: function solve(𝐹, 𝛿,𝑚𝐼 )

2: 𝑛 ← 0 ⊲ Number of check counter

3: 𝑄 ← {{[0, 1]3, 0}} ⊲ Push first interval and level 0 in 𝑄

4: ℓ𝑝 ← −1 ⊲ Previous checked level is -1

5: while 𝑄 ≠ ∅ do
6: 𝐼 , ℓ ← pop(𝑄) ⊲ Retrieve level and interval

7: 𝐵 ← 𝐵𝐹 (𝐼 ) ⊲ Compute the box inclusion function

8: 𝑛 ← 𝑛 + 1 ⊲ Increase check number

9: if 𝐵 ∩𝐶𝜀 ≠ ∅ then
10: if ℓ ≠ ℓ𝑝 then ⊲ 𝐼 is the first colliding interval of ℓ

11: 𝐼𝑓 ← 𝐼𝑡 ⊲ Save 𝑡-component of 𝐼

12: if 𝑛 ⩾ 𝑚𝐼 then ⊲ Reached max number of checks

13: return L(𝐼𝑓 ),𝑤 (𝐼𝑡 ) ⊲ Return left side of 𝐼𝑓

14:

15: if 𝑤 (𝐵) < 𝛿 or 𝐵 ⊆ 𝐶𝜀 then
16: if ℓ ≠ ℓ𝑝 then
17: return L(𝐼𝑓 ),𝑤 (𝐼𝑡 ) ⊲ Root found

18: else
19: 𝐼1, 𝐼2 ← split(𝐼 )
20: 𝑄 ← 𝑄 ∪ {{𝐼1, ℓ + 1}, {𝐼2, ℓ + 1}}
21: sort(𝑄, order)
22: ℓ𝑝 = ℓ ⊲ Update the previous colliding level

23: return∞, 0 ⊲ 𝑄 is empty and no roots were found

24:

25: function split(𝐼 = 𝐼𝑡 × 𝐼𝑢 × 𝐼𝑣 )
26: Compute 𝜅𝑡 , 𝜅𝑢 , 𝜅𝑣 according to (7)

27: 𝑐𝑡 ← 𝑤 (𝐼𝑡 )𝜅𝑡 , 𝑐𝑢 ← 𝑤 (𝐼𝑢 )𝜅𝑢 , 𝑐𝑣 ← 𝑤 (𝐼𝑣)𝜅𝑣
28: 𝑐 ← max(𝑐𝑡 , 𝑐𝑢 , 𝑐𝑣)
29: if 𝑐𝑡 = 𝑐 then ⊲ 𝑐𝑡 is the largest

30: 𝐼1 ← [L(𝐼𝑡 ), (L(𝐼𝑡 ) + R(𝐼𝑡 ))/2] × 𝐼𝑢 × 𝐼𝑣 ,
31: 𝐼2 ← [(L(𝐼𝑡 ) + R(𝐼𝑡 ))/2,R(𝐼𝑡 )] × 𝐼𝑢 × 𝐼𝑣
32: else if 𝑐𝑢 = 𝑐 then ⊲ 𝑐𝑢 is the largest

33: 𝐼1 ← 𝐼𝑡 × [L(𝐼𝑢 ), (L(𝐼𝑢 ) + R(𝐼𝑢 ))/2] × 𝐼𝑣 ,
34: 𝐼2 ← 𝐼𝑡 × [(L(𝐼𝑢 ) + R(𝐼𝑢 ))/2,R(𝐼𝑢 )] × 𝐼𝑣
35: else ⊲ 𝑐𝑣 is the largest

36: 𝐼1 ← 𝐼𝑡 × 𝐼𝑢 × [L(𝐼𝑣), (L(𝐼𝑣) + R(𝐼𝑣))/2],
37: 𝐼2 ← 𝐼𝑡 × 𝐼𝑢 × [(L(𝐼𝑣) + R(𝐼𝑣))/2,R(𝐼𝑣)]
38: return 𝐼1, 𝐼2

39:

40: function order({𝐼1, ℓ1}, {𝐼2, ℓ2})
41: if ℓ1 = ℓ2 then
42: return 𝐼𝑡

1
< 𝐼𝑡

2

43: else
44: return ℓ1 < ℓ2

At every iterationwe check if𝐵 intersects the cube𝐶𝜀 = [−𝜀𝑥 , 𝜀𝑥 ]×
[−𝜀𝑦, 𝜀𝑦] × [−𝜀𝑧 , 𝜀𝑧] (line 9); if it does not, we can safely ignore 𝐼

since there are no collisions.

If 𝐵 ∩ 𝐶𝜀 ≠ ∅, we first check if 𝑤 (𝐵) < 𝛿 or if 𝐵 is contained

inside the 𝜀-box (line 15). In this case, it is unnecessary to refine the

interval 𝐼 more since it is either already small enough (if𝑤 (𝐵) < 𝛿)
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Fig. 5. A 2D example of root finding (left) and its corresponding diagram

(right). A small colliding (red) box𝑏 that is not the earliest, since another box

𝑎 exists in the same level (𝑎 did not trigger the termination of the algorithm

since it is too big).
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Fig. 6. A 2D example of root finding (left) and its corresponding diagram

(right). Our algorithm stops when the number of checks 𝑛 reaches𝑚𝐼 after

checking the box 𝑠 , which is a non-colliding box (green). The algorithm will

return the first colliding box (𝑓 ) of the same level, right.

or any refinement will lead to collisions (if 𝐵 ⊆ 𝐶𝜀 ). We return 𝐼 𝑙𝑡
(i.e., the left hand-side of the 𝑡 interval of 𝐼 ) only if 𝐼 was the first

intersecting interval of this current level (line 16). If 𝐼 is not the

first intersecting in the current level, there is an intersecting box

(which is larger than 𝛿) with an earlier time since the queue is sorted

according to time (Figure 5).

If 𝐵 is too big we split the interval 𝐼 in two sub-intervals and push

them to the priority queue 𝑄 (line 19). Note that, differently from

Algorithm 1, we use a priority queue𝑄 instead of the stack 𝑆 . For the

vertex-triangle CCD, the domain Ω is a prism, thus, after spitting

the interval (line 19), we append 𝐼1, 𝐼2 to 𝑄 only if they intersect

with Ω. To ensure that 𝐵 shrinks uniformly (since the termination

criteria, Line 15, is𝑤 (𝐵) < 𝛿) we conservatively estimate the width

of 𝐵 (in the codomain) from the widths of the domain’s (i.e., where

the algorithm is acting) intervals 𝐼𝑡 , 𝐼𝑢 , 𝐼𝑣 :

𝛼 > 0,𝑤 (𝐼𝑡 ) <
𝛼

𝜅𝑡
,𝑤 (𝐼𝑢 ) <

𝛼

𝜅𝑢
,𝑤 (𝐼𝑣) <

𝛼

𝜅𝑣
=⇒ 𝑤 (𝐵𝐹 (𝐼 )) < 𝛼

(6)

with 𝛼 a given constant and

𝜅𝑡 = 3 max

𝑖, 𝑗=1,2
∥𝐹 (0, 𝑢𝑖 , 𝑣 𝑗 ) − 𝐹 (1, 𝑢𝑖 , 𝑣 𝑗 )∥∞,

𝜅𝑢 = 3 max

𝑖, 𝑗=1,2
∥𝐹 (𝑡𝑖 , 0, 𝑣 𝑗 ) − 𝐹 (𝑡𝑖 , 1, 𝑣 𝑗 )∥∞,

𝜅𝑣 = 3 max

𝑖, 𝑗=1,2
∥𝐹 (𝑡𝑖 , 𝑢 𝑗 , 0) − 𝐹 (𝑡𝑖 , 𝑢 𝑗 , 1)∥∞ .

(7)

Proposition 5.3. Equation 6 holds for any positive constant 𝛼 .

Proof. While 𝐵𝐹 (𝐼 ) is an interval, for the purpose of the proof

we equivalently define it as an axis-aligned bounding box whose

eight vertices are 𝑏𝑖 . We will use the super-script notation to refer

to the 𝑥,𝑦, 𝑧 component of a 3D point (e.g., 𝑏𝑥
𝑖
is the 𝑥-component

of 𝑏𝑖 ) and define the set I = {1, . . . , 8}. By using the box definition

ACM Trans. Graph., Vol. 40, No. 5, Article 188. Publication date: October 2021.



A Large Scale Benchmark and an Inclusion-Based Algorithm for Continuous Collision Detection • 188:9

the width of 𝐵𝐹 (𝐼 ) can be written as

𝑤 (𝐵𝐹 (𝐼 )) = ∥𝑏𝑀 − 𝑏𝑚 ∥∞

with

𝑏𝑘𝑀 = max

𝑖∈I
(𝑏𝑘𝑖 ) and 𝑏𝑘𝑚 = min

𝑖∈I
(𝑏𝑘𝑖 ) .

Since 𝐵𝐹 (𝐼 ) is the tightest axis-aligned inclusion function (Proposi-

tion 5.1)

𝑏𝑘𝑀 ⩽ max

𝑖∈I
𝑣𝑘𝑖 , 𝑏𝑘𝑚 ⩽ min

𝑖∈I
𝑣𝑘𝑖 ,

where 𝑣𝑖 = 𝐹 (𝐼 𝑗𝑡 , 𝐼𝑘𝑢 , 𝐼 𝑙𝑣), with 𝑗, 𝑘, 𝑙 ∈ {𝑙, 𝑟 }, thus for any coordinate

𝑘 we bound

𝑏𝑘𝑀 − 𝑏
𝑘
𝑚 = max

𝑖, 𝑗 ∈I
(𝑣𝑘𝑖 − 𝑣

𝑘
𝑗 ) ⩽ max

𝑖, 𝑗 ∈I
∥𝑣𝑖 − 𝑣 𝑗 ∥∞ .

For any pair of 𝑣𝑖 and 𝑣 𝑗 we have

𝑣𝑖 − 𝑣 𝑗 = 𝑠1𝛼𝑙,𝑚 + 𝑠2𝛽𝑛,𝑝 + 𝑠3𝛾𝑝,𝑞,

for some indices 𝑙,𝑚, 𝑛, 𝑜, 𝑝, 𝑞 ∈ {1, 2} and constant 𝑠1, 𝑠2, 𝑠3 ∈
{−1, 0, 1} with

𝛼𝑖, 𝑗 = 𝑤 (𝐼𝑡 )
(
𝐹 (0, 𝑢𝑖 , 𝑣 𝑗 ) − 𝐹 (1, 𝑢𝑖 , 𝑣 𝑗 )

)
,

𝛽𝑖, 𝑗 = 𝑤 (𝐼𝑢 )
(
𝐹 (𝑡𝑖 , 0, 𝑣 𝑗 ) − 𝐹 (𝑡𝑖 , 1, 𝑣 𝑗 )

)
,

𝛾𝑖, 𝑗 = 𝑤 (𝐼𝑣)
(
𝐹 (𝑡𝑖 , 𝑢 𝑗 , 0) − 𝐹 (𝑡𝑖 , 𝑢 𝑗 , 1)

)
,

since 𝐹 is linear on the edges. We note that 𝛼𝑖, 𝑗 , 𝛽𝑖, 𝑗 , and 𝛾𝑖, 𝑗 are the

12 edges of the box 𝐵𝐹 . We now define

𝑒𝑘𝑡 = max

𝑖, 𝑗 ∈{1,2}
|𝛼𝑘𝑖,𝑗 |, 𝑒𝑘𝑢 = max

𝑖, 𝑗 ∈{1,2}
|𝛽𝑘𝑖,𝑗 |, 𝑒𝑘𝑣 = max

𝑖, 𝑗 ∈{1,2}
|𝛾𝑘𝑖,𝑗 |

which allows us to bound

max

𝑖, 𝑗 ∈I
∥𝑣𝑖 − 𝑣 𝑗 ∥∞ ⩽ ∥𝑒𝑡 + 𝑒𝑢 + 𝑒𝑣 ∥∞ ⩽ ∥𝑒𝑡 ∥∞ + ∥𝑒𝑢 ∥∞ + ∥𝑒𝑣 ∥∞ .

Since

∥𝑒𝑡 ∥∞ ⩽ 𝑤 (𝐼𝑡 ) max

𝑖, 𝑗=1,2
∥𝐹 (𝑡1, 𝑢𝑖 , 𝑣 𝑗 ) − 𝐹 (𝑡2, 𝑢𝑖 , 𝑣 𝑗 )∥∞ = 𝑤 (𝐼𝑡 )𝜅𝑡/3,

and similarly ∥𝑒𝑢 ∥∞ ⩽ 𝜅𝑢/3, ∥𝑒𝑣 ∥∞ ⩽ 𝜅𝑣/3, we have

∥𝑒𝑡 ∥∞ + ∥𝑒𝑢 ∥∞ + ∥𝑒𝑣 ∥∞ ⩽
𝑤 (𝐼𝑡 )𝜅𝑡 +𝑤 (𝐼𝑢 )𝜅𝑢 +𝑤 (𝐼𝑣)𝜅𝑣

3

Finally, from the assumption (6) it follows that

𝑤 (𝐵𝐹 (𝐼 )) ⩽ max

𝑖, 𝑗 ∈I
∥𝑣𝑖 − 𝑣 𝑗 ∥∞ ⩽ ∥𝑒𝑡 ∥∞ + ∥𝑒𝑢 ∥∞ + ∥𝑒𝑣 ∥∞ < 𝛼.

□

Using the estimate of the width of 𝐼𝑡 , 𝐼𝑢 , 𝐼𝑣 we split the dimension

that leads to the largest estimated dimension in the range of 𝐹

(line 28).

Fixed Runtime or Fixed Accuracy. To ensure a bounded runtime,

which is very useful in many simulation applications, we stop the

algorithm after an user-controlled number of checks𝑚𝐼 . To ensure

that our algorithm always returns a conservative time of impact we

record the first colliding interval 𝐼𝑓 of every level (line 11). When

the maximum number of check is reached we can safely return

the latest recorded interval 𝐼𝑓 (line 13) (Figure 6). We note that

our algorithm will not respect the user specified accuracy when it

terminates early: if a constant accuracy is required by applications,

this additional termination criteria could be disabled, obtaining an

algorithmwith guaranteed accuracy but sacrificing the bound on the

maximal running time. Note that without the termination criteria

𝑚𝐼 , it is possible (while rare in our experiments) that the algorithm

will take a long time to terminate, or run out of memory due to

storing the potentially large list of candidate intervals 𝐿.

5.3 Results

Our algorithm is implemented in C++ and uses Eigen [Guennebaud

et al. 2010] for the linear algebra routines (with the -avx2 g++ flag).

We run our experiments on a 2.35 GHz AMDEPYC™ 7452.We attach

the reference implementation and the data used for our experiments,

which will be released publicly.

The running time of our method is comparable to the floating-

point methods, while being provably correct, for any choice of

parameters. For this comparison we use a default tolerance 𝛿 =

10
−6

and default number of iterations 𝑚𝐼 = 10
6
. All queries in

the simulation dataset terminate within 10
6
checks, while for the

handcrafted dataset only 0.25% and 0.55% of the vertex-face and

edge-edge queries required more than 10
6
checks, reaching an actual

maximal tolerance 𝛿 of 2.14 × 10
−5

and 6.41 × 10
−5

for vertex-face

and edge-edge respectively. We note that, despite the percentages

begin small, by removing𝑚𝐼 the handcrafted queries take 0.015774

and 0.042477 seconds on average for vertex-face and edge-edge

respectively. This is due to the large number of degenerate queries,

as can be seen from the long tail in the histogram of the run-times

(Figure 7). We did not observe any noticeable change of running

time for the simulation dataset.

Our algorithm has two user-controlled parameters (𝛿 and𝑚𝐼 ) to

control the accuracy and running time. The tolerance 𝛿 provides

a direct control on the achieved accuracy and provides an indirect

effect on the running time (Figure 8). The other parameter, 𝑚𝐼 ,

directly controls the maximal running time of each query: for small

𝑚𝐼 our algorithmwill terminate earlier, resulting in a lower accuracy

and thus more chances of false positives (Figure 9 top). We remark

that, in practice, very few queries require so many subdivisions:

by reducing𝑚𝐼 to the very low value of 100, our algorithm early-

terminates only on∼0.07% of the 60million queries in the simulation

dataset.

6 MINIMUM SEPARATION CCD

An additional feature of some CCD algorithms isminimal separation,
that is, the option to report collision at a controlled distance from

an object, which is used to ensure that objects are never too close.

This is useful to avoid possible inter-penetrations introduced by

numerical rounding after the collision response, or for modeling
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Table 2. Summary of the average runtime in 𝜇𝑠 (t), number of false positive (FP), and number of false negative (FN) for MSRF and our method.

Handcrafted – Vertex-Face MSCCD Handcrafted – Edge-Edge MSCCD Simulation – Vertex-Face MSCCD Simulation – Edge-Edge MSCCD

MSRF Ours MSRF Ours MSRF Ours MSRF Ours

𝑑 t FP FN t FP FN t FP FN t FP FN t FP FN t FP FN t FP FN t FP FN

10
−2

12.89 854 114 18.86K 2.6K 0 3.84 774 189 9.64K 4.8K 0 55.47 156.8K 18.3K 12.04 8.1M 0 14.42 354.1K 7.0K 19.12 8.3M 0

10
−8

15.05 216 2 1.60K 159 0 2.89 230 18 3.42K 309 0 55.26 75 0 0.72 8 0 11.12 228 1 0.73 40 0

10
−16

13.90 151 35 1.51K 108 0 2.90 231 21 2.92K 214 0 54.83 4 3.8K 0.71 2 0 10.70 10 4 0.72 17 0

10
−30

13.59 87 141 1.39K 108 0 2.89 118 157 2.79K 214 0 53.73 0 10.2K 0.66 2 0 10.68 0 1.7K 0.67 17 0

10
−100

14.45 16 384 1.43K 108 0 3.05 14 335 2.82K 214 0 53.53 0 18.6K 0.66 2 0 10.59 0 5.0K 0.68 17 0
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Fig. 7. Log histograms of the running time of positive queries and negative

queries on both dataset.
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Fig. 8. Top, average runtime of our algorithm for different tolerances 𝛿 for

the simulation dataset. The shaded area shows the range of the distribution

(min and max). Bottom, distribution of running times of our algorithm for

three different tolerances 𝛿 = 10
−8
, 10
−4
, and 1 over the simulation dataset.

fabrication tolerances for additive or subtractive manufacturing. A

minimum separation CCD (MSCCD) query is similar to a standard

query: instead of checking if a point and a triangle (or two edges)

are exactly overlapping, we want to ensure that they are always
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Fig. 9. The percentage of early-termination and maximum value of the

tolerance 𝛿 for different𝑚𝐼 for the simulation dataset.

separated by a user-defined distance 𝑑 during the entire linear tra-

jectory. Similarly to the standard CCD (Section 3) MSCCD can be

express using a multivariate or a univariate formulation, usually

measuring distances using the Euclidean distance. We focus on the

multivariate formulation since it does not require to filter spurious

roots, we refer to Section 4.2 for a more detailed justification of this

choice.

Multivariate Formulation. We observed that using the Euclidean

distance leads to a challenging problem, which can be geometrically

visualized as follows: the primitives will not be closer than 𝑑 if 𝐹 (Ω)
does not intersect a sphere of radius 𝑑 centered on the origin. This

is a hard problem, since it requires checking conservatively the

intersection between a sphere (which is a rational polynomial when

explicitly parametrized) and 𝐹 (Ω).
Studying the applications currently using minimal separation,

we realized that they are not affected by a different choice of the

distance function. Therefore, we propose to change the distance

definition from Euclidean to Chebyshev distance (i.e., from the 𝐿2
to

the 𝐿∞ distance). With this minor change the problem dramatically

simplifies: instead of solving for 𝐹 = 0 (Section 5), we need to

solve for |𝐹 | ⩽ 𝑑 . The corresponding geometric problem becomes

checking if 𝐹 (Ω) intersects a cube of side 2𝑑 centered on the origin.

Univariate Formulation. The univariate formulation is more com-

plex since it requires to redefine the notion of co-planarity for mini-

mum separation. We remark that the function 𝑓 in (3) measures the

length of the projection of 𝑞(𝑡) along the normal, thus to find point

at distance 𝑑 the equation becomes 𝑓 (𝑡) ⩽ ⟨𝑛(𝑡), 𝑞(𝑡)⟩ = 𝑑 ∥𝑛(𝑡)∥.
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Fig. 10. 1D illustration of the first three levels of our MSCCD inclusion

based root-finder. Instead of checking if 𝐼𝑔 intersects with the origin, we

check if it intersects the interval [−𝑑,𝑑 ] marked in light green.

To keep the equation polynomial, remove the inequality, and avoid

square roots, the univariate MSCCD root finder becomes

⟨𝑛(𝑡), 𝑞(𝑡)⟩2 − 𝑑2∥𝑛(𝑡)∥2 .

We note that this polynomial becomes sextic, and not cubic as in

the zero-distance version. To account for replacing the inequality

with an equality, we also need to check for distance between 𝑞

and the edges and vertices of the triangle [Harmon et al. 2011]. In

addition to finding the roots of several high-order polynomials, this

formulation, similarly to the standard CCD, suffers from infinite

roots when the two primitives are moving on a plane at distance 𝑑

from each other.

6.1 Method

The input to our MSCCD algorithm are the same as the standard

CCD (eight coordinates, 𝛿 , and𝑚𝐼 ) and the minimum separation

distance 𝑑 ⩾ 0. Our algorithm returns the earliest time of impact

indicating if two primitives become closer than 𝑑 as measured by

the 𝐿∞ norm.

We wish to check whether the box 𝐵𝐹 (Ω) intersects a cube of
side 2𝑑 centered on the origin (Figure 10). Equivalently, we can

construct another box 𝐵′
𝐹
(Ω) by displacing the six faces of 𝐵𝐹 (Ω)

outward at a distance 𝑑 , and then check whether this enlarged box

contains the origin. This check can be done as for the standard CCD

(Section 5), but the floating point filters must be recalculated to

account for the additional sum (indeed, we add/subtract 𝑑 to/from

all the coordinates). Hence, the filters for 𝐹 ′ are:

𝜖𝑥
ee

= 7.105427357601002 × 10
−15𝛾3

𝑥

𝜖𝑥
vf
= 7.549516567451064 × 10

−15𝛾3

𝑥
(8)

As before, the filters are calculated as described in [Attene 2020]

and they additionally assume that 𝑑 < 𝛾𝑥 .

To account for minimum separations, the only change in our

algorithm is at line 7 where we need to enlarge 𝐵 by 𝑑 and in

lines 9 and 15 since 𝐶𝜀 needs to be replaced with 𝐶𝜖 = [−𝜖𝑥 , 𝜖𝑥 ] ×
[−𝜖𝑦, 𝜖𝑦] × [−𝜖𝑧 , 𝜖𝑧].

6.2 Results

To the best of our knowledge, the minimum separation floating-

point time-of-impact root finder [Harmon et al. 2011] (MSRF) im-

plemented in [Lu et al. 2019], is the only public code supporting

minimal separation queries. While not explicitly constructed for
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Fig. 11. Top, average runtime of our algorithm for varying minimum sepa-

ration 𝑑 in the simulation dataset. The shaded area depicts the range of the

values. Bottom, distribution of running time for three different minimum

separation distanced 𝑑 = 10
−50

, 10
−8
, and 1 over the simulation dataset.

MSCCD, FPRF uses a distance tolerance to limit false negatives, sim-

ilarly to an explicit minimum separation. We compare the results

and performance in Appendix E.

MSRF. uses the univariate formulation, which requires to find

the roots of a high-order polynomial, and it is thus unstable when

implemented using floating-point arithmetic.

Table 2 reports timings, false positive, and false negatives for

different separation distances 𝑑 . As 𝑑 shrinks (around 10
−16

) the

results of our method with MSCDD coincide with the ones with

𝑑 = 0 since the separation is small. For these small tolerances, MSRF

runs into numerical problems and the number of false negatives

increases. Figure 11 shows the average query time versus the sepa-

ration distance 𝑑 for the simulation dataset, since our method only

requires to check the intersection between boxes, the running time

largely depends on the number of detected collision, and the average

is only mildly affected by the choice of 𝑑 .

7 INTEGRATION IN EXISTING SIMULATORS

In a typical simulation the objects are represented using triangular

meshes and the vertices are moving along a linear trajectory in a

timestep. At each timestep, collisions might happen when a vertex

hits a triangle, or when an edge hits another edge. A CCD algorithm

is then used to prevent interpenetration; this can be done in different

ways. In an active set construction method (Section 7.1) the CCD

is used to compute contact forces to avoid penetration assuming

linearized contact behaviour. For a line-search based method (Sec-

tion 7.2), CCD and time of impact are used to prevent the Newton

trajectory from causing penetration by limiting the step length. Note

that, the latter approach requires a conservative CCD, while the

former can tolerate false negatives.

The integration of a CCD algorithm with collision response al-

gorithms is a challenging problem on its own, which is beyond the

scope of this paper. As a preliminary study, to show that our method
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can be integrated in existing response algorithm, we examine two

use cases in elastodynamic simulations:

(1) constructing an active set of collision constraints [Harmon

et al. 2008; Verschoor and Jalba 2019; Wriggers 1995], Sec-

tion 7.1;

(2) during a line search to prevent intersections [Li et al. 2020],

Section 7.2.

We leave as future work a more comprehensive study including

how to use our CCD to further improve the physical fidelity of

existing simulators or how to deal with challenging cases such as

sliding contact response.

To keep consistency across queries, we compute the numerical

tolerances (5) and (8) for the whole scene. That is, 𝑥max, 𝑦max, and

𝑧max are computed as the maximum over all the vertices in the

simulation. In algorithms 3 and 4 we utilize a broad phase method

(e.g., spatial hash) to reduce the number of candidates 𝐶 that need

to be evaluated with out narrow phase CCD algorithm.

7.1 Active Set Construction

Algorithm 3 Active Set Construction Using Exact CCD

1: function ConstructActiveSet(𝑥0, 𝑥1, 𝛿,𝑚𝐼 )

2: 𝐶 ← BroadPhase(𝑥0, 𝑥1)

3: 𝐶𝐴 ← ∅
4: for 𝑐 ∈ 𝐶 do ⊲ Iterate over the collision candidates

5: 𝑡 ← CCD(𝑥0 ∩ 𝑐, 𝑥1 ∩ 𝑐, 𝛿,𝑚𝐼 )

6: if 0 ⩽ 𝑡 ⩽ 1 then
7: 𝐶𝐴 ← 𝐶𝐴 ∪ {(𝑐, 𝑡)}
8: return 𝐶𝐴

9:

10: function CCD(𝑐0, 𝑐1, 𝛿,𝑚𝐼 )

11: if 𝑐0 and 𝑐1 are edges then
12: 𝐹 ← build 𝐹ee from 𝑐0 and 𝑐1 ⊲ Equation (2)

13: else
14: 𝐹 ← build 𝐹

vf
from 𝑐0 and 𝑐1 ⊲ Equation (1)

15: return Solve(𝐹, 𝛿,𝑚𝐼 )

In the traditional constraint based collision handling (such as that

of Verschoor and Jalba [2019]), collision response is handled by per-

forming an implicit timestep as a constrained optimization. The goal

is to minimize a elastic potential while avoiding interpenetration

through gap constraints. To avoid handling all possible collisions

during a simulation, a subset of active collisions constraints 𝐶𝐴 is

usually constructed. This set not only avoids infeasibilities, but also

improves performance by having fewer constraints. There are many

activation strategies, but for the sake of brevity we focus here on

the strategies used by Verschoor and Jalba [2019].

Algorithm 3 shows how CCD is used to compute the active set

𝐶𝐴 . Given the starting and ending vertex positions, 𝑥0 and 𝑥1, we

compute the time of impact for each collision candidate 𝑐 ∈ 𝐶 . We

use the notation 𝑥𝑖 ∩ 𝑐 to indicate selecting the constrained vertices

from 𝑥𝑖 . If the candidate 𝑐 is an actual collision, that is 0 ⩽ 𝑡 ⩽ 1,

then we add this constraint and the time of impact, 𝑡 , to the active

set, 𝐶𝐴 .

𝛿 = 10
−1 𝛿 = 10

−3 𝛿 = 10
−6

Fig. 12. An elastic simulation using the constraints and active set method

of Verschoor and Jalba [2019]. From an initial configuration (left) we simulate

an elastic torus falling on a fixed cone using three values of 𝛿 (from left

to right: 10
−1, 10

−3, 10
−6
). The total runtime of the simulation is affected

little by the change in 𝛿 (24.7, 25.2, and 26.2 seconds from left to right

compared to 32.3 seconds when using FPRF). For 𝛿 = 10
−1
, inaccuracies in

the time-of-impact lead to inaccurate contact points in the constraints and,

ultimately, intersections (inset).

From the active constraint set the constraints of Verschoor and

Jalba [2019] are computed as

⟨𝑛, 𝑝1

𝑐 − 𝑝2

𝑐 ⟩ ⩾ 0,

where 𝑛 is the contact normal (i.e., for a point-triangle the triangle

normal at the time of impact and for edge-edge the edge-edge cross

product at the time of impact), 𝑝1

𝑐 is the point (or the contact point

on the first edge), and 𝑝2

𝑐 is the point of contact on the triangle

(or on the second edge) at the end of the timestep. Note that, this

constraint requires to compute the point of contact, which depends

on the the time-of-impact which can be obtained directly from our

method.

Because of the difficulty for a simulation solver to maintain and

not violate constraints, it is common to offset the constraints such

that

⟨𝑛, 𝑝1

𝑐 − 𝑝2

𝑐 ⟩ ⩾ 𝜂 > 0.

In such a way, even if the 𝜂 constraint is violated, the real constraint

is still satisfied. This common trick, implies that the constraints need

to be activated early (i.e., when the distance between two objects

is smaller than 𝜂) which is exactly what our MSCCD can compute

when using 𝑑 = 𝜂. In Figure 12, we use a value of 𝜂 = 0.001 m. When

using large values of 𝜂, the constraint of Verschoor and Jalba [2019]

can lead to infeasibilities because all triangles are extended to planes

and edges to lines.

Figure 12 shows example of simulations run with different nu-

merical tolerance 𝛿 . Changing 𝛿 has little effect on the simulation

in terms of run-time, but for large values of 𝛿 , it can affect accuracy.

We observe that for a 𝛿 ⩾ 10
−2

the simulation is more likely to

contain intersections. This is most likely due to the inaccuracies in

the contact points used in the constraints.

7.2 Line Search

A line search is used in a optimization to ensure that every up-

date decreases the energy 𝐸. That is, given an update, Δ𝑥 , to the

optimization variable 𝑥 , we want to find a step size 𝛼 such that

𝐸 (𝑥 + 𝛼Δ𝑥) < 𝐸 (𝑥). This ensure that we make progress towards a

minimum.
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Algorithm 4 Line Search with Exact CCD

1: function LineSearch(𝐸, 𝑥0,Δ𝑥, 𝑝, 𝛿,𝑚𝐼 )

2: 𝑥1 ← 𝑥0 + Δ𝑥
3: 𝐶 ← BroadPhase(𝑥0, 𝑥1) ⊲ Collision candidates

4: 𝛼 ← 1

5: 𝑑𝑖 , 𝜌𝑖 ← Distance(𝐶)
6: Compute 𝜖𝑖 from (8)

7: 𝑑 ← max(𝑝𝑑𝑖 , 𝛿)
8: while 𝑝 < (𝑑 − 𝛿 − 𝜖𝑖 − 𝜌𝑖 )/𝑑 do
9: 𝑝 ← 𝑝/2
10: 𝑑 ← 𝑝𝑑𝑖

11: 𝛿𝑖 ← 𝛿

12: for 𝑐 ∈ 𝐶 do ⊲ 𝛼 is bounded by earliest time-of-impact

13: 𝑡, ¯𝛿𝑖 ←MSCCD(𝑥0 ∩ 𝑐, 𝑥1 ∩ 𝑐, 𝑑, 𝛼, 𝛿,𝑚𝐼 )

14: 𝛼 ← min(𝑡, 𝛼)
15: 𝛿𝑖 ← max( ¯𝛿𝑖 , 𝛿𝑖 )
16: if 𝑝 < (𝑑 − 𝛿𝑖 − 𝜖𝑖 − 𝜌𝑖 )/𝑑 then
17: 𝛿 ← 𝛿𝑖 ⊲ Repeat with 𝑝 validated from 𝛿𝑖
18: Go to line 8.

19:

20: while 𝛼 > 𝛼min do ⊲ Backtracking line-search

21: 𝑥1 ← 𝑥0 + 𝛼Δ𝑥
22: if 𝐸 (𝑥1) < 𝐸 (𝑥0) then ⊲ Objective energy decrease

23: break
24: 𝛼 ← 𝛼/2
25: return 𝛼

26:

27: functionMSCCD(𝑐0, 𝑐1, 𝑑, 𝑡, 𝛿,𝑚𝐼 )

28: if 𝑐0 and 𝑐1 are edges then
29: 𝐹 ← build 𝐹ee from 𝑐0 and 𝑐1 ⊲ Equation (2)

30: else
31: 𝐹 ← build 𝐹

vf
from 𝑐0 and 𝑐1 ⊲ Equation (1)

32: return SolveMSCCD(𝐹, 𝑡, 𝛿,𝑚𝐼 , 𝑑)

When used in a line search algorithm, CCD can be used to prevent

intersections and tunneling. This requires modifying the maximum

step length to the time of impact. As observed by Li et al. [2020],

the standard CCD formulation without minimal separation cannot

be used directly in a line search algorithm. Let 𝑡★ the earliest time

of impact (i.e., 𝐹 (𝑡★, �̃�, 𝑣) = 0 for some �̃�, 𝑣 and there is no collision

between 0 and 𝑡★) and assume that the energy at 𝐸 (𝑥0 + 𝑡★Δ𝑥) <
𝐸 (𝑥0) (Algorithm 4, line 22). In this case the step 𝛼 = 𝑡★ is a valid

descent step which will be used to update the position 𝑥 in outer

iteration (e.g., Newton optimization loop). In the next iteration, the

line search will be called with the updated position and the earliest

time of impact will be zero since we selected 𝑡★ in the previous

iteration. This prevents the optimization from making progress

because any direction Δ𝑥 will lead to a time of impact 𝑡 = 0. To

avoid this problem we need the line search to find an appropriate

step-size 𝛼 along the update direction that leaves “sufficient space”

for the next iteration, so that the barrier in [Li et al. 2020] will be

active and steer the optimization away from the contact position.

Formally, we aim at finding a valid CCD sequence {𝑡𝑖 } such that

𝑡𝑖 < 𝑡𝑖+1, lim

𝑖→∞
𝑡𝑖 = 𝑡★, and 𝑡𝑖/𝑡𝑖+1 ≈ 1.

The first requirement ensures that successive CCD checkswill report

an increasing time, the second one ensures that we will converge

to the true minimum, and the last one aims at having a “slowly”

convergent sequence (necessary for numerical stability). Li et al.

[2020] exploit a feature of FPRF to simulate a minimal separation

CCD: in this work we propose to directly use our MSCCD algorithm

(Section 6).

Constructing a Sequence. Let 0 < 𝑝 < 1 be a user-defined tolerance

(𝑝 close to 1 will produce a sequence {𝑡𝑖 } converging faster) and 𝑑𝑖
be the distance between two primitives. We propose to set 𝑑 = 𝑝𝑑𝑖 ,

and ensure that no primitive are closer than 𝑑 . Without loss of

generality, we assume that 𝐹 (𝑥 +Δ𝑥) = 0, that is, taking the full step

will lead to contact. By taking successive steps in the same direction,

𝑑𝑖 will shrink to zero ensuring 𝑡𝑖 to converge to 𝑡★. Similarly we

will obtain a growing sequence 𝑡𝑖 since 𝑑 decreases as we proceed

with the iterations. Finally, it is easy to see that 𝑝 = 𝑡𝑖/𝑡𝑖+1 which

can be close to one.

To account for the aforementioned problem, we propose to use our

MSCCD algorithm to return a valid CCD sequence when employed

in a line search scenario. For a step 𝑖 , we define 𝛿𝑖 as the tolerance,

𝜖𝑖 the numerical error (8), and 𝜌𝑖 as the maximum numerical error

in computing the distances 𝑑𝑖 from the candidates set 𝐶 (line 5). 𝜌𝑖
should be computed using forward error analysis on the application-

specific distance computation: since the applications are not the

focus of our paper, we used a fixed 𝜌𝑖 = 10
−9
, and we leave the

complete forward analysis as a future work. (We note that our

approximation might thus introduce zero length steps, this however

did not happen in our experiments.) If 𝑑𝑖 − (𝛿𝑖 + 𝜖𝑖 + 𝜌𝑖 ) > 𝑑 , our

MSCCD is guaranteed to find a time of impact larger than zero. Thus

if we set 𝑑 = 𝑝𝑑𝑖 (line 7), we are guaranteed to find a positive time

of impact if

𝑑𝑖 >
𝛿𝑖 + 𝜖𝑖 + 𝜌𝑖

1 − 𝑝 .

To ensure that this inequality holds, we propose to validate 𝑝 before

using the MSCCD with 𝛿 (line 8), find the time of impact and the

actual 𝛿𝑖 (line 12), and check if the used 𝑝 is valid (line 16). In case

𝑝 is too large, we divide it by two until it is small enough. Note that,

it might be that

𝑑𝑖 < 𝛿𝑖 + 𝜖𝑖 + 𝜌𝑖 ,
in this case we can still enforce the inequality by increasing the

number of iterations, decreasing 𝛿 , or using multi-precision in the

MSCCD to reduce 𝜖𝑖 . However, this was never necessary in any of

our queries, and we thus leave a proper study of these options as a

future work.

As visible from Table 2, our MSCCD slows down as 𝑑 grows.

Since the actual minimum distance is not relevant in the line search

algorithm, our experiments suggest to cap it at 𝛿 (line 7). To avoid

unnecessary computations and speedup the MSCCD computations,

our algorithm, as suggested by Redon et al. [2002], can be easily

modified to accept a shorter time interval (line 13): it only requires

to change the initialization of 𝐼 (Algorithm 2 line 3). These two

modifications lead to a 8× speedup in our experiments. We refer
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𝛿 = 10
−3 𝛿 = 10

−4.5 𝛿 = 10
−6

Fig. 13. An example of an elastic simulation using our line search (Sec-

tion 7.2) and the method of Li et al. [2020] to keep the bodies from intersect-

ing. An octocat is falling under gravity onto a triangulated plane. From left

to right: the initial configuration, the final frame with 𝛿 = 10
−3
, 𝛿 = 10

−4.5
,

𝛿 = 10
−6

all with a maximum of 10
6
iterations. There are no noticeable

differences in the results, and the entire simulations takes 63.3, 67.9, and

67.0 seconds from left to right (a speed up compared to using FPRF which

takes 102 seconds). ©Brian Enigma under CC BY-SA 3.0.

to this algorithm with MSCCD (i.e., Algorithm 2 with MSCDD,

Section 6.1, and modified initialization of 𝐼 ) as SolveMSCCD.
Figure 13 shows a simulation using our MSCCD in line search to

keep the bodies from intersecting for different 𝛿 . As illustrated in

the previous section, the effect of 𝛿 is negligible as long as 𝛿 ⩽ 10
−3
.

Timings vary depending on the maximum number of iterations.

Because the distance 𝑑 varies throughout the simulation, some steps

take longer than others (as seen in Figure 11). We note that, if we use

the standard CCD formulation 𝐹 = 0, the line search gets stuck in all

our experiments, and we were not able to find a solution. Note that

for a line search based method it is crucial to have a conservative

CCD/MSCCD algorithm: the videos in the additional material shows

that a false negative leads to an artefact in the simulation.

8 LIMITATIONS AND CONCLUDING REMARKS

We constructed a benchmark of CCD queries and used it to study

the properties of existing CCD algorithms. The study highlighted

that the multivariate formulation is more amenable to robust im-

plementations, as it avoids a challenging filtering of spurious roots.

This formulation, paired with an interval root finder and modern

predicate construction techniques leads to a novel simple, robust,

and efficient algorithm, supporting minimal separation queries with

runtime comparable to state of the art, non conservative, methods.

While we believe that it is practically acceptable, our algorithm

still suffers from false positive and it will be interesting to see if

the multivariate root finding could be done exactly with reasonable

performances, for example employing expansion arithmetic in the

predicates. Our definition of minimal separation distance is slightly

different from the classical definition, and it would be interesting

to study how to extend out method to directly support Euclidean

distances. Another interesting venue for future work is the extension

of our inclusion function to non-linear trajectories and their efficient

evaluation using static filters or exact arithmetic.

Our benchmark focuses only on CPU implementations: reim-

plementing our algorithm on a GPU with our current guarantees

is a major challenge. It will require to control the floating-point

rounding on the GPU (and compliant with the IEEE floating-point

standard), to ensure that the compiler does not reorder the opera-

tions or skip the computation of temporaries. Additionally it would

require to recompute the ground truth and the numerical constants

for single precision arithmetic, as most GPUs do not yet support

double computation. This is an exciting direction for future work to

further improve the performance of our approach.

We will release an open-source reference implementation of our

technique with anMIT license to foster adoption of our technique by

existing commercial and academic simulators. We will also release

the dataset and the code for all the algorithms in our benchmark to

allow researchers working on CCD to easily compare the perfor-

mance and correctness of future CCD algorithms.
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Fig. 14. Prism resulting from the input points and triangle in (9). The origin

is marked by the red dot.

A DATASET FORMAT

To avoid any loss of precision we convert every input floating-point

coordinate in rationals using GMP [Granlund and the GMP Devel-

opment Team 2012]. This conversion is exact since every floating

point can be converted in a rational number, as long as the numera-

tor and denominator are arbitrarily large integers. We then store

the numerator and denominator as a string since the numerator

and denominator can be larger than a long number. To retrieve the

floating point number we allocate a GMP rational number with the

two strings and convert it to double.
In summary, one CCD query is represented by a 8 × 7 matrix

where every row is one of the 8 CCD input points, and the columns

are the interleaved 𝑥,𝑦, 𝑧 coordinates of the point, represented as

numerator and denominator. For convenience, we appended several

such matrices in a common CSV file. The last column represents

the result of the ground truth. For instance a CC query between
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2
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3
, 𝑝0

4
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where 𝑝𝑡
𝑖𝑥𝑛

and 𝑝𝑡
𝑖𝑥
𝑑

are respectively the numerator and denominator

of the 𝑥-coordinate of 𝑝 , and𝑇 is the same ground truth. The dataset

and a query viewer can be downloaded from the NYU Faculty Digital

Archive.

B EXAMPLE OF DEGENERATE CASE NOT PROPERLY

HANDLED BY [Brochu et al. 2012]

Let

𝑝0 = [0.1, 0.1, 0.1], 𝑣0

1
= [0, 0, 1], 𝑣0

2
= [1, 0, 1], 𝑣0

3
= [0, 1, 1],

𝑝1 = [0.1, 0.1, 0.1], 𝑣1

1
= [0, 0, 0], 𝑣1

2
= [0, 1, 0], 𝑣1

3
= [1, 0, 0]

(9)

be the input point and triangle. Checking if the point intersects

the triangle is equivalent to check if the prism shown in Figure 14

contains the origin. However, the prism contains a bilinear face that

is degenerate (it looks like a “hourglass”). The algorithm proposed

in [Brochu et al. 2012] does not consider this degenerate case and

erroneously reports no collision.
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Table 3. Summary of the average runtime in 𝜇𝑠 (t), number of false positive (FP), and number of false negative (FN) for FPRF and our method.

Handcrafted – Vertex-Face MSCCD Handcrafted – Edge-Edge MSCCD Simulation – Vertex-Face MSCCD Simulation – Edge-Edge MSCCD

FPRF Ours FPRF Ours FPRF Ours FPRF Ours

𝑑 t FP FN t FP FN t FP FN t FP FN t FP FN t FP FN t FP FN t FP FN

10
−2

2.41 1.8K 4 18.86K 2.6K 0 1.16 3.3K 19 9.64K 4.8K 0 8.04 869.1K 1 12.04 8.1M 0 8.01 1.1M 0 19.12 8.3M 0

10
−8

4.53 83 3 1.60K 159 0 0.60 160 28 3.42K 309 0 8.00 4 2 0.72 8 0 0.77 16 0 0.73 40 0

10
−16

2.23 29 69 1.51K 108 0 0.55 45 145 2.92K 214 0 7.78 0 5.2K 0.71 2 0 0.25 0 2.3K 0.72 17 0

10
−30

2.24 9 70 1.39K 108 0 0.58 5 147 2.79K 214 0 7.77 0 5.2K 0.66 2 0 0.25 0 2.3K 0.67 17 0

10
−100

2.31 9 70 1.43K 108 0 0.80 5 147 2.82K 214 0 7.75 0 5.2K 0.66 2 0 0.25 0 2.3K 0.68 17 0

C EXAMPLE OF INFLECTION POINT NOT PROPERLY

HANDLED BY [Tang et al. 2014]

Let

𝑝0 = [1, 1, 0], 𝑣0

1
= [0, 0, 5], 𝑣0

2
= [2, 0, 2], 𝑣0

3
= [0, 1, 0],

𝑝1 = [1, 1, 0], 𝑣1

1
= [0, 0,−1], 𝑣1

2
= [0, 0,−2], 𝑣1

3
= [0, 7, 0]

be the input point and triangle. Checking if they intersect at time 𝑡

is equivalent to finding the roots of

−72𝑡3 + 120𝑡2 − 44𝑡 + 3.

To apply the method in [Tang et al. 2014] we need to rewrite the

polynomial in form of Tang et al. [2014, Equation (1)]:

1𝐵3

0
(𝑡) − 35

3

𝐵3

1
(𝑡) + 82

3

𝐵3

2
(𝑡) + 14𝐵3

3
(𝑡).

Their algorithm assumes no inflection points in the Bezier curve.

Thus it proposes to split the curve at the eventual inflection point

(as in the case above). The formula proposed in [Tang et al. 2014,

Section 4.1] contains a typo, by fixing it we obtain the inflection

point at:

𝑡 =
6𝑘0 − 4𝑘1 + 𝑘2

6𝑘0 − 6𝑘1 + 3𝑘2 − 𝑘3

=
5

9

.

By using the incorrect formula we obtain 𝑡 = 155/312, which is

not an inflection point. In both cases, 𝑡 cannot be computed exactly

since it contains a division, and computing it approximately breaks

the assumption of not having inflection points in the Bezier form. In

the reference code, the authors detect the presence of an inflection

point using predicates, but do not split the curve (the case is not

handled). We modified the code (patch attached in the additional

material) to conservatively return a collision in these cases.

Independently from this problem, their reference implementation

returns false negative (i.e. misses collisions) for certain configura-

tions, such as the following degenerate configuration:

𝑝0 = [1, 0.5, 1], 𝑣0

1
= [0, 0.57, 1], 𝑣0

2
= [1, 0.57, 1], 𝑣0

3
= [1, 1.57, 1],

𝑝1 = [1, 0.5, 1], 𝑣1

1
= [0, 0.28, 1], 𝑣1

2
= [1, 0.28, 1], 𝑣1

3
= [1, 1.28, 1] .

We could not find out why this is happening, and we do not

know if this is a theoretical or numerical problem, or a bug in the

implementation.

D EFFECT OF 𝛿 ON THE INTERVAL-BASED METHODS

UIRF, IRF, and our method have a single parameter 𝛿 to control the

size of the interval. Increasing 𝛿 will introduce more false positive,

while making the algorithms faster (Figure 15). Note that we limit

the total running time to 24h, thus UIRF does not have result for
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Fig. 15. Log plot of the effect of the tolerance 𝛿 on the running time (top)

and false positives (bottom) for the three (Ours, UIRF, and IRF) interval

based methods on the simulation dataset.

𝛿 > 10
−6

(for 𝛿 = 10
−6

it takes 1ms per query in average). 𝛿 has a

similar effect on the number of false positives for the three interval

basedmethods, while it has a more significant impact on the running

time for UIRF and IRF.

E MINIMUM SEPARATION WITH FPRF

In Table 3 we compare our method with FPRF by changing the

parameter 𝜂 that mimics minimum separation.
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